





### Roadway & Parking Facility Previously Drained Directly to the Lake

Impaired Waterbody – Chlorides, Road Pollutants, Silt, Urban Runoff





## Three Segments of the Corridor



## Vegetated Swales



**Pre-Treatment** Helps Preserve Primary System Turf Lined or Planted



### **Rain Gardens**





**Provide Filtration** Reduce Runoff Volumes Aesthetically Pleasing







### Three Segments of the Corridor



### **Porous Pavements**

 Parking areas, access roads, walkways, driveways, cul-de-sacs, urban and suburban Lower Speed roads (30 mph), ......No Contaminated sites

#### Porous Asphalt



Porous Asphalt





### Porous Asphalt Pavement - Why ??

- Groundwater recharge augmentation
- Runoff Reduction
- Effective pollutant treatment for solids, metals, nutrients, and hydrocarbons
- Little to No Closed Drainage System Needed
- Safety Improvements Glare, Road Spray
- Reduced Hydroplaning Friction When wet
- Reduced de-icing Materials Reduced Black Ice
- Less Susceptible to Frost No Capillary Action
- Noise Reduction







## West End - Porous Pavement



# Beach Road Section







# Specifications

ITEM 623.120100WR – POROUS ASPHALT CRUSHED STONE STABILIZATION COURSE (CY) ITEM 623.120200WR – POROUS ASPHALT CRUSHED STONE RESERVOIR COURSE (CY)

#### GRADATION:

Material shall be graded in accordance with size designations shown in Table 703-4 from the NYSDOT Standard Specifications.

Stabilization Course - Size Designation No. 2

Reservoir Course - Size Designation No. 4A

|    | TABLE 703-4 <sup>(1)</sup> SIZES OF STONE, GRAVEL AND SLAG |        |        |             |              |               |          |        |        |         |      |                    |
|----|------------------------------------------------------------|--------|--------|-------------|--------------|---------------|----------|--------|--------|---------|------|--------------------|
|    |                                                            |        |        |             |              | Sc            | reen Siz | es     |        |         |      |                    |
| 1  | Size<br>Designation                                        | 4 in   | 3 in   | 2 1/2<br>in | 2 in         | 1 1/2<br>in   | 1 in     | 1/2 in | 1/4 in | 1/8 in  | # 80 | #200 <sup>(3</sup> |
| j. | Screenings <sup>(2)</sup>                                  |        | -      | - 1         |              | <b>-</b>      | -        | 100    | 90-100 | :       | -    | 0-1.0              |
|    | 1B                                                         |        | -      | -           | 127          | 9 <b>2</b> 0  | -        | -      | 100    | 90-100  | 0-15 | 0-1.0              |
|    | 1A                                                         | -      | -      | -           | -            | <del></del>   | -        | 100    | 90-100 | 0-15    | -    | 0-1.0              |
|    | 1ST                                                        |        |        |             | -            | <u></u>       | <u> </u> | 100    | 0-15   | <u></u> | 12   | 0-1.0              |
|    | 1                                                          |        | -      | -           | -            | -             | 100      | 90-100 | 0-15   | -       | -    | 0-1.0              |
|    | 2                                                          |        | -      | -           | -            | 100           | 90-100   | 0-15   | -      |         | -    | 0-1.0              |
|    | 3A                                                         | 100    | -      | -           | 100          | 90-100        | 0-15     | -      | -      | -       |      | 0-0.7              |
|    | 3                                                          |        | -      | 100         | 90-100       | 35-70         | 0-15     | -      | -      |         | 1940 | 0-0.7              |
|    | 4A                                                         | -      | 100    | 90-100      | -            | 0-20          | -        | -      | 1.70   |         | -    | 0-0.7              |
|    | 4                                                          | 100    | 90-100 |             | 0-15<br>0.15 | 12            | 2        | -      | -      | -       | -    | 0-0.7              |
|    | 5                                                          | 90-100 | 0-15   | -           | -            | () <b>-</b> ) | -        | - 1    | -      | -       | -    | 0-0.7              |



| 25.<br>\$345           | 96                       | <u>63.46</u><br>\$844.46             | \$1,              | 43.45                                           | \$1,842.45                                |         | 5   | \$365.00                                         | 11.5 | \$839.50                      |                           | 24.0 01 |
|------------------------|--------------------------|--------------------------------------|-------------------|-------------------------------------------------|-------------------------------------------|---------|-----|--------------------------------------------------|------|-------------------------------|---------------------------|---------|
| 5 \$355.<br>28.<br>283 | 00 11.5<br>84<br>84      | \$816.50<br><u>66.34</u><br>\$882.84 | 18 \$1,<br>\$1,   | 278.00 24.5<br>103.84<br>381.84                 | \$1,739.50<br><u>141.33</u><br>\$1,880.83 |         | 5.5 | \$394.66<br>\$401.50<br>32.62                    | 12   | \$907 71<br>\$876.00<br>71.18 | 18.5 \$1.310.50<br>109.73 | 25 \$   |
| μ1Δ                    | 50 12<br>73<br>23        | \$852.00<br><u>69.23</u><br>\$921.23 | 18.5 \$1.<br>\$1. | <sup>31</sup><br><sup>10</sup><br><sup>42</sup> | 1                                         | Lincoln | 6   | \$434.12<br>\$438.00<br><u>35.59</u>             | 12.5 |                               | # 2                       | 25.5    |
|                        | 00 12.5<br>61<br>61      | \$887.50<br><u>72.11</u><br>\$959.61 | 19 \$1.<br>\$1.   | 34 <b>11</b><br>45                              |                                           | and a   | 6.5 | \$473.59<br>\$474.50<br><u>38.55</u><br>\$513.05 | 13   |                               |                           | 26      |
| 1/4"                   | 50 <b>13</b><br>50<br>00 | \$923.00<br><u>74.99</u><br>\$997.99 | 19.5 \$1<br>\$1   | 3/                                              | /8″                                       |         | 7   | \$511.00<br><u>41.52</u><br>\$552.52             | 13.5 |                               | 3/4″                      | 26.5    |
| 97.                    | 00 13.5                  | \$958.50<br>77.88                    | 20 \$1            | 42                                              | 32.004.01                                 |         |     |                                                  |      |                               |                           |         |





Placed Choker Course on One Half





































### Rutting of Choker Course Installed Too Thick (i.e. 4")











## Polymer Additive / Fibers

Styrene – Butadiene – Styrene (SBS)





#### 2 - 6% by Weight Added to Asphalt Binder

Mineral Fibers – basalt, sometimes Cellulose is used. Control Drain Down – 0.3% to 0.6% by Weight Added at Dry Mix Stage









# Sample Cores









## Specific Gravity

Air Void % = (Gmax - Gtest) / Gmax

Gmax = Theoretical Maximum Specific Gravity

- Based on Laboratory Test of Mix Max Density
- Rice Number (named after James Rice)

Gtest = Test Specimen Specific Gravity

• Lab test of Cores

Used to Verify In-place Mix and Calibrate Density Meters

| mass of<br>ecimen<br>emoval<br>aled bag,<br>g | E - Mass of the<br>sealed specimen<br>underwater, g | Ratio of mass of<br>dry to to the<br>mass of the bag | F - Apparent<br>specific gravity<br>of the plastic<br>bag, provided by<br>the<br>manufacturer | Specimen bulk<br>specific gravity,<br>Gmb<br>Gtest | RICE #<br>Maximum<br>specfic gravity of<br>the mixture,<br>Gmm<br>Gmax | Specimen air<br>voids, % | Comments           | Density<br>pounds/c<br>divided by<br>factor of 1 |
|-----------------------------------------------|-----------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------------------------------|--------------------------|--------------------|--------------------------------------------------|
| 41.4                                          | 1403.7                                              | 52.2451                                              | 0.7729                                                                                        | 1.9337                                             | 2.529                                                                  | 23.54                    | None               | 120.7                                            |
| 01.6                                          | 1602                                                | 119.2885                                             | 0.6616                                                                                        | 2.0867                                             | 2.529                                                                  | 17.49                    | None               | 130.2                                            |
| 53.7                                          | 1694.3                                              | 60.2740                                              | 0.7595                                                                                        | 1.9834                                             | 2.529                                                                  | 21.57                    | None               | 123.8                                            |
| 73.6                                          | 937.6                                               | 79.4444                                              | 0.7277                                                                                        | 1.8411                                             | 2.529                                                                  | 27.20                    | None               | 114.9                                            |
| 87.6                                          | 1571.1                                              | 57.1996                                              | 0.7646                                                                                        | 1.9632                                             | 2.529                                                                  | 22.37                    | None               | 122.5                                            |
| 66. <mark>8</mark>                            | 181 153.00                                          |                                                      |                                                                                               |                                                    | 2                                                                      | 26.33                    | None               | 116.3                                            |
| 86.8                                          | 73<br>113.00                                        |                                                      | ~                                                                                             | /                                                  |                                                                        | 25.29                    | None               | 117.9                                            |
| 69.6                                          | 19 93.00                                            | TC                                                   | )P COURSE                                                                                     |                                                    | ——Air Voids                                                            | 19.88                    | None               | 126.4                                            |
| 51.1                                          | 207 53.00                                           |                                                      | Variances                                                                                     |                                                    | density                                                                | 20.36                    | None               | 125.7                                            |
|                                               | 33.00                                               |                                                      | $\sim$                                                                                        |                                                    |                                                                        |                          | TOP COURSE         |                                                  |
|                                               | 1 2 3 4 5 6 7 8 9                                   |                                                      |                                                                                               |                                                    |                                                                        | Air Voids                | = (Gmax-Gtest) / G | imax                                             |



#### Data = Unreliable



Solution - Increase Dry Mix Time by 10 to 15 seconds during Production to Avoid Asphalt Clumping on Fibers



# Improperly Mixed Fibers





# 2<sup>nd</sup> Test Panel - Gauge Calibration

|                                                                  | Lob Doculto                    |                                          |                                             |                                                                                        |  |  |
|------------------------------------------------------------------|--------------------------------|------------------------------------------|---------------------------------------------|----------------------------------------------------------------------------------------|--|--|
| Specimen number<br>Specimen number<br>Specific gravity,<br>Gtest |                                | Specimen Density,<br>Ibs/ft <sup>3</sup> | Troxler Model 343                           | 30 Serial Number 23531<br>Correction Factors<br>Correction Factor, Ibs/It <sup>-</sup> |  |  |
| Core 1 - Top                                                     | 1.9535                         | 121.90                                   | 117.7                                       | 4.20                                                                                   |  |  |
| Core 2 - Top                                                     | 2.0140                         | 125.67                                   | 122.3                                       | 3.37                                                                                   |  |  |
| Core 3 - Top                                                     | 1.9616                         | 122.40                                   | 117.5                                       | 4.90                                                                                   |  |  |
| Core 4 - Top                                                     | 1.9358                         | 120.80                                   | 117.2                                       | 3.60                                                                                   |  |  |
| Core 5 - Top                                                     | 1.9849                         | 123.86                                   | 121.2                                       | 2.66                                                                                   |  |  |
| Core 6 - Top                                                     | 1.9443                         | 121.33                                   | 116.8                                       | 4.53                                                                                   |  |  |
| Core 7 - Top                                                     | 2.0032                         | 125.00                                   | 122.4                                       | 2.60                                                                                   |  |  |
| Core 8 - Top                                                     | 1.9914                         | 124.26                                   | 120.8                                       | 3.46                                                                                   |  |  |
| 1 Core 9 - Top                                                   | 1.9779 X 6                     | 2.4 = 123.42                             | Minus 117.5 =                               | 5.92                                                                                   |  |  |
| Gmax = 2.5                                                       | 52 for Mix (fr                 | om Plant)                                | Ave Correction Factor                       | 3.91                                                                                   |  |  |
| Gtarget = 2.52<br>Minus the                                      | 2 – (19% x 2.)<br>Correction I | 52) x 62.4<br><sup>-</sup> actor =       | Project Target Density, lbs/ft <sup>3</sup> | 123.5                                                                                  |  |  |

## Asphalt Drain Down



















# Asphalt Drain Down

| PG 64-2<br>w/ ER 6<br>porous | 2 P<br>0% 4/8/2013<br>LOT 1-A<br>TEST STRIP<br>BINDER FOR BEACH ROAD<br>end wt of pan - sta<br>wt of samp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BINDER<br>wt of sample =<br>tare wt of pan =<br>end wt of pan =<br>mt wt of pan = | @ 290 DEG. F<br>1051.3<br>395.4<br>396.4<br>0.10<br>AVE D | @ 327 DEG F.<br>1447.2<br>395.2<br>397.5<br>0.20<br>RAINDOWN 0.15 |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------|
| <b>BLE</b><br>0.6%           | FIBERS<br>FIBERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDES<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FIDERS<br>FID | TOP TEST S<br>4/<br>C                                                             | TRIP FOR BEACH ROA<br>/9/2013                             | ND (#2)                                                           |

| =0.4 /0 +/ -                                 |                                    | @290deg f @ 3   | 327 deg f       |
|----------------------------------------------|------------------------------------|-----------------|-----------------|
| DRAIN DOWN TEST                              | wt of sample =<br>tare wt of pan = | 1113.7<br>395.2 | 1108.1<br>395.4 |
|                                              | end wt of pan =                    | 395.5           | 396.3           |
| PG 76-22 P <u>end wt of pan</u><br>w/ ER 60% | start wt of pan =<br>sample        | 0.03            | 0.08            |









## Rolling Temperature – Critical !

• Ambient Temperature 50 to 70 degrees F.

Ideally - Wind – 0 to 3 mph

• Beware - Asphalt surface cooling to quick

No Paving Top Course under 50 degrees F.



# Rolling Temperature – Critical !

Binder Course – 200 - 245 F.
Top Course – 200 - 220 F.
Finish Rolling - 110 - 140 F. - Top, - 140 – 150 F. - Binder

4 to 6 Passes with 10 to 13 Ton Roller OK (Static)
Increases in Density of 1 to 2 lbs/CF up to 5 passes

• Density Spike of 4 to 5 lbs/CF at 140 F.

• 1 to 3 Passes with 3.5 to 5 Ton Roller to Finish

Rolling Temperature – Critical !






| Troxler Model 3430<br>Serial Number 23531 123.5 122.5 124.1                                 |   |
|---------------------------------------------------------------------------------------------|---|
|                                                                                             |   |
| Instrotek Xplorer<br>Serial Number 720122.8122.0123.5                                       | ; |
| PQI Model 301<br>Serial Number 002792,<br>Programmed Offset Value<br>16.0 139.6 138.9 140.4 | ł |
| B&L_REV1_4/26/2013, TCB                                                                     |   |

#### BEACH ROAD PAVING INFORMATION SHEET Revised April 26, 2013

- Binder Course 40\* to 70\* F. Ambient Temp (must have 50\* Min Surface Temp)
- Top Course 50\* to 70\* F. No Paving Top Course w/ Ambient Temp under 50\* F.
- Wind up to 10 mph Pave @ 50\* F. Up to 20 mph pave @ above 60\* F.
- In-Truck as delivered Temps 250\*-300\* Binder, 240\*- 280\* for Top
- Contact Tom Baird If temps over 300\* F. in Truck

#### NO VIBRATORY Rolling – Only STATIC Rolling

- Roll Binder Course 200 to 245\* F.... Six (6) Passes 10 -13 Ton
- Binder Course Finish Rolling -> 10 13 Ton, <u>140\* 150\* F. to Target Density</u>
- Roll Top Course 200 to 220\*F. Expect Three (3) Passes 10 -13 Ton
- Top Course Finish Rolling -> <u>110\* to 140\* F. to achieve Target Density</u>
- Centerline Joint Meet previously paved edge with Hot Asphalt Wait until temps on edges equalize (min. 140\*) Roll to Pinch Joint
- Item 402.7903WR (GlasGrid #8512) over Culvert and Transverse Joints

| Gauge                                                                     | TOP<br>Batch Plant Only<br>Top Course Project<br>Target Density (PTD),<br>Ibs/ft <sup>3</sup> | BINDER                                                                              |                                                                                      |  |
|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--|
|                                                                           |                                                                                               | DRUM Plant<br>Binder Course Project<br>Target Density (PTD),<br>Ibs/ft <sup>3</sup> | BATCH Plant<br>Binder Course Project<br>Target Density (PTD),<br>lbs/ft <sup>3</sup> |  |
| Troxler Model 3430<br>Serial Number 23531                                 | 123.5                                                                                         | 122.5                                                                               | 124.1                                                                                |  |
| Instrotek Xplorer<br>Serial Number 720                                    | 122.8                                                                                         | 122.0                                                                               | 123.5                                                                                |  |
| PQI Model 301<br>Serial Number 002792,<br>Programmed Offset Value<br>16.0 | 139.6                                                                                         | 138.9                                                                               | 140.4                                                                                |  |

#### B&L\_REV1\_ 4/26/2013, TCB

Gmax = 2.xx for Mix (From Plant each day)

#### Gtarget = 2.xx – (19% x 2.xx) x 62.4 lb/cf - Correction Factor for Each Meter





40







41



# Beach Road System Safeguards





# Beach Road System Safeguards

Offsite Contamination Protection Flanking Structures













44









46





47















































### NYSDEC Project Total Crushed Stone

15,000 CY Crushed Stone 405,000 CF 30,375,000 pounds (40% Air Voids)

Compare to 45,562,500 pounds (10% Air Voids)

Savings of 7,600 Tons = 380 truck loads Savings in Trucking Fuel = 4,500 gal. of Diesel Savings in Mining, Crushing, Handling =







Courtesy Lake George Association















# NYSDEC Lake George Beach Facility















### **Gutter Broom's are Inappropriate for porous pavement and act to drive sediment into pores**







### **Mechanical Broom Sweepers**





## **Sweeper Types**

### **Mechanical Sweepers**

They effectively remove gross pollutants and large debris (i.e. appropriate for spring clean-up), dirt and fine particles are actually forced into cracks by the broom head. The broom also tends to "push" the finer particles creating large amounts of dust. Mechanical broom sweepers are not typically recommended for porous surfaces.

Vacuum sweepers utilize a windrow broom to push debris over to a vacuum suction nozzle. Only a small area is actually vacuumed, the majority of the pass is swept with a broom (creating the potential for dust). Vacuum sweepers are acceptable for use on porous surfaces.

### **Vacuum Sweepers**

### **Regenerative Air** Vacuums / Sweepers

A controlled jet of air is directed into the cracks to dislodge dirt and fine particles. At the same time, a debris pick-up head vacuums particle across the entire length of the pass. Because there are no internal brooms and they utilize a closed loop system, dust is minimized. Regenerative Air sweepers are an acceptable method for maintaining porous surfaces.





• Effective at removing trash, dirt and fine particles from surface.

• Closed loop, brushless system reduces dust.

• A controlled blast of air dislodges debris and fines from the porous surface while the pick-up head vacuums the material.

• Recommended for use on porous pavement.

### **Regenerative Air Sweepers**





71


























77

#### Environmental Challenges Historic and Cultural Resources Impact Avoidance – Spanning the Resource

A spear Point displayed at New York State Museum where some of the dozens of findings are displayed with some dating back to approximately 8,000 B.C.

According to museum officials, this Spear Point artifact is estimated to be 8,000 years old.









| WEyre Eng                            |                                               | the Generation 1                                    | Trailed - ant                                                      |
|--------------------------------------|-----------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------|
| This Fort is winded on a Plain, that | is theten and South What of it from 200 to 3  | 10 yarde, Jaining Ground                            | at (A) is the most convenient for                                  |
| athat of the Barren arriver at (B.   | & C) which is rather he fas to do any great . | Mischief, buins a wide o                            | levering between the Alers. She                                    |
| Jake Tite, and this of & Camp, are   | pretty secure from any great Dancer &         | the linemy will not find                            | it an every Matter to get Stry                                     |
| of the Acurtain no to copy the sh    | wamp to give the hate without partly frame    | Inconveniency (in) being                            | repart to g bannen from i Fort                                     |
| The Common at (D) has a Bro          | adwork mind with Sand, & Carth, E.E.          | ) The Columna of regula                             | r Franch Joseps, and Canadias                                      |
| And attache this lamp & Sextom       | Garison of 100, or 500. Men, with comme       | to to fail upon the Flanks<br>nient Barrachs, Swo A | 1 during the Congagement - The<br>Lagarines for Polades beach from |
| with a large Hapital of frame        | trength, & Caremates for 200 Men, barida      | 1 Annhouses for 2500                                | Barrels of Provisions.                                             |







































NYSDEC - \$M Beach Reservoir Stone beneath both Porous & Conventional Pavement – October 2014















#### Vacuum

## Maintenance

oach than the one used fo

#### Sweeping Porous Pavement

Research demonstrates that vacuum sweepers are the best option when sweeping porous pavement

The lase of porous pavement sur-faces for parking loss, driveways, alleys, and footpaths as an effec-tive bear management practice to control sornwater runoff has been growing at a double digit rune in the United Stars in recent years. The long-term success of porous pavement systems to promore maximum water flow depends on prop-er installation, maintenance and clean-ing practices - Induding regular sweep-ing practices - Induding regular sweep-ing maintenance and search aparticipated in various research pro-parans with major universities and municipalities across the United Stares to develop a better understanding of the maintenance requirements of the maintenance maintenance the maintenance requirements of the maintenance maintenance the maintenance requirements of the maintenance maintenance maintenance the maintenance maintenance ma

#### Plugging

faces shound . the casual passersb

the maintenance requirements "This research has helped clarify the e vacuum sweepers and regenerative sweepers play in maintaining and aning porous pavement surfaces,"

Types of Per

porous subsurface. The blocks have a gap between them filled with loose, sandy filler which allows water to perco-late through the gaps. Giles says the use of interlocking pavers is growing in the United Starse, sepecially in low-speed (under 45 mph) traffic and patking areas and in high-pedestrian areas. If pavers are routinely cleaned, the If pavers are routinely cleaned, the depth of plugging can generally be lim-ited to half an inch. The most effic-tive way to rescore the percolation of paver surfaces is to remove the rop layer of granular filler that is comaminated. Clean filler is then reapplied. Several industry studies have shown that both surface ropes will plug, to varying degrees, with slit, fine day, cement derivatives, and decomposed plant material. Maintaining and elam-ing provus pavement surfaces to prevent the buildup of these sediments requires:

Plugging Provus asphale, porous concrete, and interdocking paver block surfaces can all become plugged with fine delots – mixtures of silt and oils – that can stop the percolating action and negate the purpose of the system. The first step in retaining the porous nature of the sur-faces should be on install signs to inform the easual passersby that the surface is porous and the creation archites –.

different approach tha traditional pavement. Regenerative Air Sv 



- Maintain Vegetated Areas
- Vacuum 2 3 X / Year
- Slope Vegetated Areas Away from Roadway
- Use Sod to Establish Turf
- Education Public and Municipal
- Deep Clean Promptly if Accident Occurs

• Design Offsite Protection Systems into your project

There are three types of permeable sur-faces in use in the United States for sorroware remediation purposes – prorowa seplatel, porous concrete, and unterlocking paver blocks. Torous seplatel and concrete rend to be multiple-layer construction. Water runs through the layers to a sub-layer, which allows general or directed drainage. Cleaning the pores of porous asphalt or concrete is some-what challenging. "When high-pressure sparyers are used for cleaning, pollution is actually driven into the pores" Giles says. Therefocking, permeable paver blocks are non-porous blocks arranged on a

Contractors need to understand the mechanics of street sweepers and their ef on porous surfaces before using a sweeper to clean the surface in order to pre further clogging.

24 February 2010 · PAVEMENT · www.pave nentonline.com

**Expect Continued Improvements** in Maintenance Options and Equipment



## Questions?





Thomas Baird, P.E.

Barton & Loguidice, D.P.C.

10 Airline Drive Suite 200 Albany, NY 12205 (518) 218-1801

tbaird@bartonandloguidice.com





### **PDH** Questions

- A Porous Pavement systems may NOT be advisable when:
  - a. It is Adjacent to a Contaminated soil site
  - b. Operating Speeds are over 45 mph
  - c. Proposed for use at a fueling station
  - d. Installed adjacent to a Desert
  - e. All of the Above

- How many Acres of Porous Asphalt was Installed at the NYSDEC Lake George Beach
  - a. 11.0
  - b. 26.0
  - c. 3.0
  - d. 0.0

#### **PDH** Questions

- At what ambient air temperature range is it recommended to place and finish Porous Asphalt?
  - a. 85 to 100 degrees Fahrenheit
  - b. 30 to 40 degrees Fahrenheit
  - c. 867 5309 Call Lorenzo

d. 98.6 degrees Celsius

e. 50 to 70 degrees Fahrenheit

- Applying a Choker Course Can help you accomplish which of the following:
  - Get Arrested
  - Seal off the Lower layers
  - Win a Cage Fight
  - Stabilize the larger stone course or courses

## **PDH** Questions

• True or False

Geotextiles and other Geosynthetics require careful Attention to Detail for proper performance



- The Pre-cast Porous Concrete Used was Cured for how many days before arriving on-site
  - a. 7 days
  - b. 2 days
  - c. 6 months
  - d. 28 days

## **PDH** Questions

- True or False
- The lower the Asphalt Mix Temperature, The likelihood the project will have a higher quality Porous Asphalt.



Name Two (2) Invasive Species Threatening Lake George

Zebra Mussel

Asian Clam

Chinese Mystery Snail

Spiny Water Flea